Name	Chem 1194: Acid-Base Equilibria & Indicator			
Date	Sectio	n		157
I. Indicator Solutions				
Name one indicator with tw	o forms, and two	o similarly-colo	ored wells.	
At which change in solution (a) between acidic and	n acidity does this neutral, or (b) be	s indicator char etween neutral a	nge forms: and basic solutions	?
Name an indicator with 2 for wells because one well con	orms, and 3 differ tains a mixture of	rently-colored f both forms.		
Name one indicator with th	ree forms, one pr	cominent in eac	h well.	
III. Cation Hydrolysis				
Salt pH	Salt	pН	Salt	pH
AlCl ₃	CuCl ₂		FeCl ₃	
LaCl ₃	NaCl _		ZnCl ₂	
IIIa. Hydrolysis of NaCl is	expected to be ne	gligible, the di	fference from pH 7	.0 insignificant.
What difference did you fir	nd? pH of salt – '	7.00 =		
Is the pH of NaCl solution	significantly diffe	erent from neut	ral? Yes May	be No
If significant, what dissolve	ed gas might be re	esponsible?	-	
IIIb. AlCl ₃ and LaCl ₃ differ o	only by cation siz	e. What pH dif	ference did you fin	d, <i>i.e.</i> calculate
$\Delta pH = pH_{LaCl_3} - pH_{AlCl_3} =$		Ĩ		
State the direction of a size eff	ect if there is one	2.		

IIIc. The cations of NaCl and LaCl₃ differ only in cation charge. What pH difference did you

find? $\Delta pH = pH_{NaCl} - pH_{LaCl_3} =$

State the direction of a charge effect if there is one.

Name	Chem 1194: Acid-Base Equilibria & Indicators
138	

IIId. Give a balanced equation for the hydrolysis of hydrated iron (III) ions in FeCl₃ solution.

 $Iron^{3+}$ is smaller than the ions compared above. Considering the effects of b through d, rationalize the pH of FeCl₃ solution.

IV. Basic Character of Anions Molecular equation for (NH ₄) ₂ CO ₃ (s) equilibrium:						
Net ionic equation for Na ₂ CO ₃ (aq) equilibrium:						
Which base, CO_3^{2-} or Cl^- ,	is stronger by odor indication	? by pH indication?				
V. Fraction of Ionization Greatest [H ⁺]/c _{acid} is	> median is	> least dissociated is				
HCl equation	$HC_2H_3O_2$ equation					
$\begin{array}{l} 10\{[H^+]_{dil}/~[H^+]_{init}\}\\ for~HCl \end{array}$	$10{[H^+]_{dil}/ [H^+]_{init}}$ for HOAc	10{[H ⁺] _{dil} / [H ⁺] _{init} } for buffer				
acid of highest ratio > median > lowest ratio Explain the highest or median case. Realize that $10\{[H^+]_{dil}/[H^+]_{init}\}$ is also $\{[H^+]_{dil}/c_{dil}\}/\{[H^+]_{init}/c_{init}\}.$						
VI. Buffering Which solution showed the biggest pH increase with a single drop of 0.1 M NaOH?						
Which tube would become basic with the fewest drops?						

What was the buffer capacity (in drops)?

In **Part VI** the pH increases with each drop NaOH added; in **Part I** the indicator did not change color with each drop. Explain how solutions of different acidity can have the same indicator color.